Television delivers news, entertains us, and strengthens family bonding. Due to its fascinating role, particularly among the children, who has invented TV when is a common question. How has Television been evolving and diffusing in society also creates curiosity. As a matter of fact, there is no single inventor. Many inventors have contributed, often working separately, giving no answer to who invented television and when. Moreover, the idea of Television has fueled profit-making opportunities. The relentless journey of perfection also kept technology core changing, consequentially fueling the evolution of this remarkable invention. The uprising of the technology core also caused Creative Destruction. The journey of invention and evolution of Television offers us a lesson about how competition in profiting from ideas fuels the evolution of inventions. Hence, it’s worth looking into the unfolding dynamics of invention, evolution, and creative destruction of Television.
Key takeaways of television invention and evolution
- Inventor and year of invention of television–the credit of television invention does not belong to a single inventor. The invention of television did not happen in a particular year either. A Flow of Ideas created by several individuals over more than 40 years culminated into the invention of television. Three inventors, namely Paul Julius, John Logie Baird and Vladimir Kosma Zworykin, jointly deserve credit for the invention of Television. Television’s invention occurred due to a series of ideas distilling from 1834 to 1939.
- Evolution of Television--since its invention, over 100 years, television has been evolving in getting better and cheaper. The underlying force of television evolution has been the change of technology core. It started with the change from vacuum tubes to transistors in the 1950s. The next major source of the evolution of television was due to the change of CRT displays by LCD flat panels. The change of transmission from analog to digital also caused the evolution. The recent trend of adding more software components has been evolving television into smart devices.
- Migration of television Innovation epicenter–although television invention was dominated by the Europeans and Americans. The innovation epicenter of television is now centered in Asia. Notably, the migration of innovation epicenter of Television started in the 1950s from the USA to Japan, due to Sony’s success in reinventing television by changing vacuum tubes with transistors.
Ideas and Praxis underpinning the invention of TV
To begin with, let’s ask a couple of questions. Which triggered the invention of TV? Or, how did people get the inspiration for inventing TV? Unlike other living things, human beings have an inherent creative urge to get jobs done better with ideas. Ancient philosophical writings term it as praxis. Visual observation is one of the fascinating experiences. But in order to experience it, physical presence in the close vicinity is required. In many situations, it is not a feasible option. As a result, this desire remained unmet. Hence, human beings were looking for ideas to make it happen from a distance. This inherent urge to get visual experience from a distance kept driving the creative process of human beings.
At last, they succeeded with the idea of Television. However, it emerged in a very primitive form. Subsequently, the long journey of evolution of TV began. Indeed, it has been a very long journey lasting over more than a century.
The precursor to Television invention
Prior to the invention of TV, the journey of transmission of raster images began. Alexander Bain introduced the facsimile machine from 1843 to 1846. However, it used mechanical raster scanning techniques for the transmission of still images by wire. In 1873, Willoughby Smith discovered the photoconductivity of the element Selenium. Subsequently, this scientific discovery led to the development of the Selenium cell phototube. As the resistance of Selenium varies with the intensity of incident light, this technology succeeded in transferring incident optical information into the variation of current. Later on, it became the core technology for the development of mechanical Television.
Invention emerged as a mechanical Television
In 1884, a 23-year-old German student Paul Julius Gottlieb Nipkow proposed and patented the Nipkow disk. It’s a spinning disk with a spiral pattern of holes in it. Each hole scanned a line of the image. In 1900, Constantin Perskyi coined the term television and spelled out down the concept based on existing electromechanical technologies, including the work of Nipkow and others. It was a theoretical concept, but this work was important nevertheless. Georges Rignoux and A. Fournier, in Paris in 1909, demonstrated proof-of-concept by clearly transmitting individual letters of the alphabet as an 8×8 pixel image. By the 1920s, amplification made Television practical. This inspired Scottish inventor John Logie Baird to develop his prototype video systems employing the Nipkow disk. With the support of his businessman friend, Mr. Baird ventured int the journey of commercialization of Television. Subsequently, the refinement of mechanical scanning technology kept progressing.
However, Nipkow disk-based mechanical scanning technology reached saturation upon reaching 48 lines. Meanwhile, in the Soviet Union, Léon Theremin had been developing a mirror drum-based television reaching the success of transmission of an image of 100 lines by 1927. In the USA in 1925, Charles Francis Jenkins demonstrated the synchronized transmission of silhouette pictures based on his article “Motion Pictures by Wireless” published in 1913. Subsequently, he got a U.S. patent for Transmitting Pictures over a Wireless network on June 30, 1925. Simultaneously, Researchers at Bell laboratories also became active and succeeded in making remarkable demonstrations. At last, all these demonstrations culminated in the establishment of the world’s first television station in 1928.
The saturation of mechanical technologies and the uprising of electronics started a new era
In the meantime, on December 25, 1925, in Japan, Kenjiro Takayanagi demonstrated a television system using a Nipkow disk scanner and CRT display. To sum up the first phase, inventive activities in the mechanical phase centered around four nodes. They were located in Europe, Japan, the Former Soviet Union, and the USA. Mr. Takayanagi’s invention led the Television to evolve into the electronic age.
Television evolution entering the electronic age
As opposed to spinning disk, the core technology of electronic Television is a cathode ray tube. In this tube, the electron beam is used to scan the surface for the conversion of the optical signal into electrical ones, and vice versa. The development of cathode ray tube technology has roots in the work done by J.J. Thomson and Karl Ferdinand Braun in 1897. In 1926, Hungarian engineer Kálmán Tihanyi designed a television system utilizing fully electronic scanning and display elements. Tihanyi’s breakthroughs were incorporated in RCA’s video camera tube “iconoscope” in 1931, subsequently used in early TV cameras. Philo Farnsworth’s demonstration in 1928 for the US press is widely regarded as the first electronic television demonstration. By 1935, Japanese inventor Takayanagi had invented the first all-electronic television.
Patent race to profit from the idea of Television
Takayanagi had invented the first all-electronic television. Nevertheless, he did not claim a patent. In the meantime, commercial interest to profit from the idea started gaining momentum. Contrary to Mr. Takayanagi, American company RCA became very serious in acquiring patents as a preparation to profit from the TV innovations. RCA bought both patents of TV signal transmission and reception, based on work done by Kálmán Tinhanyi. Meanwhile, while working for Westinghouse Electric in 1923, Vladimir Zworykin was also experimenting with the cathode ray tube to create and show images. Although Zworykin’s imaging tube never got beyond the laboratory stage, RCA acquired the Westinghouse patent. RCA also entered into a patent lawsuit against Farnsworth. After a long court battle, in 1939, RCA agreed to pay Farnsworth US$1 million over a ten-year period, in addition to license payments, to use Farnsworth’s patents.
Upon acquiring key patents, RCA vigorously engaged in the production of electronic Television with the demonstration of an all-electronic television system in 1939. RCA invested over $50 million in the development of electronic television. Its R&D effort was led by Russian-born scientist Vladimir Kosma Zworykin. RCA began the commercial journey by selling television sets with 5 by 12 in (12.7 by 25.4 cm) picture tubes. It was a primitive product. Nevertheless, it was the beginning of a new era of the human race.
Television experienced an extremely high diffusion rate
The debut of TV created so much excitement among the consumers that the number of television sets in use rose from 6,000 in 1946 to some 12 million by 1951. The penetration rate of black and white Television in American homes was far faster than any other previous invention. By 1955, half of all U.S. homes had one. This rapid diffusion created a significant fortune for RCA. The mass-produced RCA 630-TS TV set was a 95-pound tabletop machine. It was introduced in 1946 with an initial selling price of $435. RCA emerged as the dominant TV maker of the world with the reputation that RCA chief David Sarnoff was proud to be called the “Father of Television,”
The emergence of the Color Television
The experimentation of color TV started in the first decade of the 20th century. Patents on Color TV concepts were issued in Germany on March 31 in1908, in Britain on April 1 in 1908, in France in 1910, and also in Russia in 1910. Along with the development of mechanical TV, John Logie Baird demonstrated the world’s first color transmission on July 3, 1928, using scanning discs with three spirals of apertures, both at the transmitting and receiving ends. Unfortunately, his work on the Telechrome system ended with his demise in 1946. Mexican inventor Guillermo González Camarena experimented with TV in the 1930s, which led to a patent for the “trichromatic field sequential system” color television in 1940.
American company CBS began experimental color field tests using film as early as August 28, 1940, and live cameras by November 12. RCA’s NBC made its first field test of color television on February 20, 1941. Upon perfection of 3 electron gun-based concept and bandwidth-conserving image representation technique, all-electronic color TV was introduced in the U.S. in 1953. The initial price of $1,295 dollars, in today’s dollars that would probably work out to be in the range of more than 10-thousand dollars, was the major barrier to the adoption.
Disruptive innovation and the emergence of Sony as a dominant player
Invention, Evolution, and Creative Destruction of Television have been driven by the uprising of Disruptive technologies, causing disruptions to incumbents. Despite the fact that Japanese inventor Kenjiro Takayanagi perfected the first electronic TV in 1935, the initial phase of profit-making opportunity was realized by American firms like RCA. The havoc created by World War II and the patent-holding of electronic TV by RCA were among several barriers for the Japanese to take a slice of this lucrative pie.
The invention of the Transistor in 1947 silently opened a door for new entrants. Sony took advantage. While RCA was overlooking the primitive emergence of Transistor, Sony was desperate to keep refining it. This refinement practice reached very deep. Subsequently, this led to a winning prize by one of Sony’s R&D team members. This journey of continuous advancement of Transistor led to Sony’s successes in Radio in the 1960s, which was immediately followed by Television.
Soon after it, Sony took over the dominance of RCA and became the world’s largest TV maker. It maintained this position till the recent past, before Samsung took over. Nevertheless, Sony is still the leader in the premium market segment of TV. Moreover, Sony’s uprising riding on the next wave of disruptive technology led to the destruction of RCA.
Digital, and Flat Screen, 3D and Smart TVs
Despite the fact that the invention of Television was a big success, Technology for Television kept improving. Particularly, there was an urgency to improve picture quality. Digital Transmission was brought forward to replace analog for higher-quality pictures. With the emergence of low-cost, high-performance computers, digital Television started growing the root. Ultimately, in the 1990s, digital TV became a real possibility. Japanese companies like Sony led the initiative of digital TV became practically feasible due to a major technological development, discrete cosine transform (DCT) for video compression.
Flat-screen for portable and extra-large Televisions
In order to reduce weight and make the screen flat of large TVs, alternative display technology development started in the 1980s. Some of the notable ones are LCD, Plasma, and LED. The initial target application of LCD was portable Television. Unlike the development of cathode ray tube displays in the early 20th century by Americans and Europeans, this new generation of display technology was dominated by the Japanese. Seiko introduced the first LCD TV in 1982 as the Epson TV Watch. It was a small wrist-worn active-matrix LCD television. Shortly after that, Sharp, Citizen, and Casio followed EPSON’S footsteps. Subsequent technology progression led to the increasing popularity of LCD TVs, which led to surpassing sales of cathode ray tube televisions worldwide in 2007.
3D and Smart Televisions
3D TV has a long history. In 1928, John Logie Baird demonstrated Stereoscopic 3D Television. However, his 3D television systems were based on electro-mechanical and cathode-ray tube techniques. There was a renewed interest of advancing 3D TVs in the 21st century. 3D-ready TV sets are those that can operate in 3D mode to recreate a stereoscopic image, with the support of an HDMI port, a minimum output refresh rate of 120 Hz, and glasses.
The long journey of the evolution of Television has led to the emergence of Smart TV. Indeed, it’s a traditional television set with integrated Internet and interactive Web 2.0 features that allow users to stream music and videos, browse the Internet, view photos, and enjoy on-demand streaming media. On top of it, it could also be wireless plugged into gadgets like smartphones and cameras.
Disruptive technologies driving invention, evolution, and creative destruction of Television
TV as an invention created huge excitement. Its evolution is equally impressive with the uprising of disruptive technologies causing creative destruction. The uprising of cathode ray tube (CRT)-based image formation and reception, known as full electronic TV, gave the window for RAC to enter the race to profit from TV invention. However, the uprising of electronic TV caused destruction to Baird’s mechanical TV business. On the other hand, the emergence and growth of Sony’s Transistor-based design kept making TV sets less costly, but at the cost of the market share of RCA. Subsequently, RCA lost dominance and suffered from destruction. Finally, the development of flat-screen technology like LCD, LED, OLED, Plasma and MicroLED has taken TV’s to a new height, causing destruction to the CRT industry.
It’s also interesting that the journey of creative destruction driving the evolution of TV made the geographical nucleus of the TV industry dynamic. First, it moved the nucleus from Europe to America. Later on, it moved to Japan, followed by South Korea and China. Indeed, TV has a remarkable journey of creating excitement and transforming industries through waves of disruptive technologies, causing creative destruction. Will foldable screen and smartphone cause destruction to the usual appearance of TV sets?
Furthermore, this long journey has not ended yet. On the whole, it has been a fascinating journey. It offers highly valuable lessons not only about the creative power of the human race but also most importantly, the technology innovation dynamics in the competitive market. The profitmaking competition from ideas has been unfolding waves of disruptive technologies causing creative destruction. These dynamics have been at the core of its continued evolution for offering us increasingly better Television at decreasing cost.
1 comment
Your post really made me think. I appreciate the new perspectives you’ve introduced here. Keep up the excellent work!